Interferon-Inducible IFI16, a Negative Regulator of Cell Growth, Down-Regulates Expression of Human Telomerase Reverse Transcriptase (hTERT) Gene
نویسندگان
چکیده
BACKGROUND Increased levels of interferon (IFN)-inducible IFI16 protein (encoded by the IFI16 gene located at 1q22) in human normal prostate epithelial cells and diploid fibroblasts (HDFs) are associated with the onset of cellular senescence. However, the molecular mechanisms by which the IFI16 protein contributes to cellular senescence-associated cell growth arrest remain to be elucidated. Here, we report that increased levels of IFI16 protein in normal HDFs and in HeLa cells negatively regulate the expression of human telomerase reverse transcriptase (hTERT) gene. METHODOLOGY/PRINCIPAL FINDINGS We optimized conditions for real-time PCR, immunoblotting, and telomere repeat amplification protocol (TRAP) assays to detect relatively low levels of hTERT mRNA, protein, and telomerase activity that are found in HDFs. Using the optimized conditions, we report that treatment of HDFs with inhibitors of cell cycle progression, such as aphidicolin or CGK1026, which resulted in reduced steady-state levels of IFI16 mRNA and protein, was associated with increases in hTERT mRNA and protein levels and telomerase activity. In contrast, knockdown of IFI16 expression in cells increased the expression of c-Myc, a positive regulator of hTERT expression. Additionally, over-expression of IFI16 protein in cells inhibited the c-Myc-mediated stimulation of the activity of hTERT-luc-reporter and reduced the steady-state levels of c-Myc and hTERT. CONCLUSIONS/SIGNIFICANCE These data demonstrated that increased levels of IFI16 protein in HDFs down-regulate the expression of hTERT gene. Our observations will serve basis to understand how increased cellular levels of the IFI16 protein may contribute to certain aging-dependent diseases.
منابع مشابه
Expression Pattern of Alternative Splicing Variants of Human Telomerase Reverse Transcriptase (hTERT) in Cancer Cell Lines Was not Associated with the Origin of the Cells
Telomerase and systems controlling their activity have been of great attention. There are controversies regarding the role of the alternative splicing forms of the human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase. Therefore, the correlation between telomerase enzyme activity, the abundance of alternatively spliced variants of hTERT and doubling time of a seri...
متن کاملInterferon alpha down-regulates telomerase reverse transcriptase and telomerase activity in human malignant and nonmalignant hematopoietic cells.
Recently, the derepressed expression of the catalytic subunit of telomerase, human telomerase reverse transcriptase (hTERT), the enzyme that elongates telomeres, has been implicated as an important step in the immortalization process. The exact regulation of hTERT expression, which is the rate-limiting factor for telomerase activity, is at present unclear. As transformed cells seem to be depend...
متن کاملInterferon a down-regulates telomerase reverse transcriptase and telomerase activity in human malignant and nonmalignant hematopoietic cells
Recently, the derepressed expression of the catalytic subunit of telomerase, human telomerase reverse transcriptase (hTERT), the enzyme that elongates telomeres, has been implicatedasan importantstep in the immortalization process. The exact regulation of hTERT expression, which is the rate-limiting factor for telomerase activity, is at present unclear. As transformed cells seem to be dependent...
متن کاملبررسی میزان بیان تلومراز در دو رده سلولی آلوده به ویروس پاپلیومای انسانی پرخطر
Background: Human papilloma virus (HPV) is one of the most important factors in cervical cancer. Viral sequences are integrated into the host cell genome. In mild cases the virus causes skin damages, in severe cases it leads to cancer. Like many other cancers, telomerase gene expression was increased in cervical cancer. This enzyme is a reverse transcriptase that contains two common subunits: i...
متن کاملMCPH1/BRIT1 represses transcription of the human telomerase reverse transcriptase gene.
MCPH1, a repressor of human telomerase reverse transcriptase (hTERT) function, is implicated in cellular immortalization. But little is known about how MCPH1 represses telomerase activity. In this study, to determine the mechanism by which MCPH1 regulates hTERT gene expression, we examined the role of MCPH1 in regulating the hTERT promoter in vitro. Co-transfection of the hTERT promoter with MC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010